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Abstract
We discuss the transition strength between the disordered ground state and the
basic low-lying triplet excitation for interacting dimer materials by presenting
theoretical calculations and series expansions as well as inelastic neutron
scattering results for the material KCuCl3. We describe in detail the features
resulting from the presence of two differently oriented dimers per unit cell
and show how energies and spectral weights of the resulting two modes are
related to each other. We present results from the perturbation expansion in
the interdimer interaction strength and thus demonstrate that the wavevector
dependence of the simple dimer approximation is modified in higher orders.
Explicit results are given in tenth order for dimers coupled in 1D, and in second
order for dimers coupled in 3D with application to KCuCl3 and TlCuCl3.

1. Introduction

Low-dimensional quantum antiferromagnets have received much interest in recent years since
they serve as model substances allowing us to investigate in detail the effects of quantum
fluctuations and to test theoretical models. One important class of materials in this context
consists of an assembly of dimers (two strongly coupled spins 1/2) which interact sufficiently
weakly to guarantee that the dimer gap does not close. These materials are characterized by a
disordered singlet ground state and a finite spin gap to triplet excited states. Prominent examples
in this class are KCuCl3 and TlCuCl3 which have been investigated in detail in the last years
by static and dynamic methods as well as theoretically [1]. The most detailed experimental
information is obtained from inelastic neutron scattering (INS) experiments, which directly
explore the basic singlet–triplet transition in all of reciprocal space [2, 3].

The energy of the singlet–triplet transition along the principal axis in reciprocal space
as measured in these experiments is well described by the model of interacting dimers; to
lowest order this is formulated as the effective dimer model [4, 5], and it has been refined by
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perturbative cluster expansions up to sixth order [3]. Here we supplement this analysis by
discussing the dynamical structure factor.

The dynamical structure factor for spins localized on a Bravais lattice is defined as

Sαβ(q, ω) =
∫ ∞

−∞
dt e−iωt 〈Sα(q, t)Sβ(−q, 0)〉 (1)

where

Sα(q, t) =
∑

R

e−iqRSα(R, t) (2)

is the Fourier transformation of the spin operators at lattice sites R. The superscripts α, β
denote the spin components and the brackets 〈· · ·〉 thermal expectation values (which for
T = 0 reduce to ground-state expectation values 〈0| · · · |0〉). Apart from known prefactors,
equation (1) reflects the spectral weight from the magnetic neutron scattering cross section [6].

If we consider transitions from the ground state |0〉 to some well defined eigenstate |n〉
with energy ωn(q), we obtain δ-peaked contributions to the dynamical structure factor

Sαβ(q, ω) =
∑

n

〈0|Sα(q)|n〉〈n|Sβ(−q)|0〉δ(ω − ωn(q)) (3)

=
∑

n

I αβn (q)δ(ω − ωn(q)). (4)

In interacting dimer materials, INS probes directly the transition from the (singlet) ground state
|0〉 to the lowest (triplet) excitation |t〉 and we will reduce our discussion to this contribution to
the dynamical structure factor. Owing to the rotational symmetry of the underlying Heisenberg
model it is sufficient to calculate I zz

t (q) only and we use the shorthand Ism(q) := I zz
t (q) to

denote the lowest triplet (single magnon) contribution to the spectral weight.
The INS investigation of the materials KCuCl3 and TlCuCl3 at finite magnetic fields

provides direct verification of this point as reported in [7].
The discussion of our results is organized as follows. In section 2 we will give theoretical

results for a 1D array of interacting dimers. This model has been treated before [8]; it is,
however, instructive to demonstrate for the simple 1D case that existing standard expansions
are modified by additional terms which emerge starting in second order. In addition we present
the quantitative changes for the transition strength comparing first order to tenth order results
to show the effect of high order calculations. In section 3 we discuss interacting dimers in a
3D network by presenting in parallel neutron scattering results for the material KCuCl3 and
series expansions to second order. The same type of additional term as in 1D is obtained in
this calculation and corrects the results for the dynamical structure factor as obtained in the
random phase approximation (RPA) before; see [9]. These RPA results are found to be correct
only to first order. Section 4 gives our conclusions.

2. Alternating chain

First we consider the one-dimensional (1D) alternating S = 1/2 spin chain with isotropic
nearest-neigbour interactions. The Hamiltonian of this model is of the following form:

H = J
N∑

n=1

(S1(n) · S2(n) + λS2(n) · S1(n + 1)), J > 0. (5)

Here, the alternating chain is described as a system with N unit cells with two spins each and
periodic boundary conditions are used. There are two exchange constants, J and λJ ; for λ = 0
the ground state of the system consists of singlets on the intracell bonds (n, 1)− (n, 2). These
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local singlets can be excited to triplets which remain gapped excitations when switching on
λ, 0 < λ < 1. In the limit λ = 1 we arrive at the well known Heisenberg antiferromagnet
(HAFM) with pairs of S = 1/2 spinons as lowest gapless excitations. Other related models
are described in [10].

The triplet excitation energiesω(q) have been obtained by perturbation expansion in λ up
to ninth order in [8] and to tenth order in [5] using the cluster expansion approach.

2.1. The dynamical structure factor

Turning to the calculation of the structure factor for a system with Hamiltonian (5), we note
(see equations (1) and (2)) that for this calculation we have to specify the positions of the spins,
R, in space (whereas the eigenvalues depend solely on the exchange constants). In a slight
generalization of a strictly linear geometry we allow for our calculation the separation d of
two spins in one unit cell to be different in magnitude and direction from the separation a of
two adjacent spins in different unit cells (note that a defines the overall chain direction). The
resulting geometry is shown in figure A.1 and makes clear the relation to the real 3D systems
to be dealt with in the next section: the 1D chain defined in equation (5) can alternatively be
looked at as a ladder with rung and diagonal interactions only. For the chain geometry shown
in figure A.1 the spectral intensity up to first order in λ is obtained as follows:

Ism(q) = sin2 qd
2

(
1 +

1

2
λ cos(qa)

)
+ O(λ2). (6)

Here, q is the wavevector, d and a the separation of the spin sites within and between the
dimers, respectively. We note that the term ∝ sin2(qd/2) is typical for systems consisting of
isolated dimmers; it is known as the dimer structure factor [11]. The first order correction in
λ adds an additional modulation to the intensity, which depends on the ratio σ = ‖d‖/‖a‖.

Using the cluster expansion method (see appendix A) we have systematically calculated
the series in λ for the intensity up to the tenth order. This requires linked clusters consisting
of a maximum of ten bonds. The resulting series can be split into three different terms:

Ism(q) = Bc(q, λ) + Bs(q, λ) +�(q, λ). (7)

To illustrate the result we give the series up to fourth order3:

Bc(q, λ) = sin2 qd
2

4∑
j=0

µ j cos( jqa),

Bs(q, λ) = sin qd
4∑

j=0

ν j sin( jqa)

(8)

where

µ0 = 1 − 5
16λ

2 − 3
32λ

3 + 25
1536λ

4, ν0 = 0,

µ1 = 1
2λ− 1

8λ
2 − 5

192λ
3 + 41

2304λ
4, ν1 = 1

8λ
2 + 7

192λ
3 − 131

4608λ
4,

µ2 = 3
16λ

2 + 7
48λ

3 + 23
1024λ

4, ν2 = 1
96λ

3 + 25
4608λ

4,

µ3 = 5
64λ

3 + 155
2304λ

4, ν3 = 23
2304λ

4,

µ4 = 35
1024λ

4, ν4 = 0,

(9)

and

�(q, λ) = 1
128λ

4(cos(2qd)− cos(2qa)). (10)

3 Higher order terms are available on request.
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Figure 1. Structure factor with λ = 0.4, 0.8, a ‖ d and ratio d/a = 10/20.

The terms in Bc(q, λ) are consistent with previous publications [8], whereas Bs(q, λ) and
�(q, λ) contain additional corrections. They originate from a complete expansion of both the
ground state |0〉 and the first excited state |t〉. If one assumes that 〈0|S2i |t〉 = −〈0|S2i+1|t〉
for the matrix elements on even and odd sites, one ends up with Bc(q, λ) only. However this
is only correct to first order and in general we have 〈0|S2i |t〉 �= −〈0|S2i+1|t〉. This inequality
arises from virtual states with odd parity under exchange of two triplets which occur during
the perturbation expansion for the first time in second order.

In figures 1 and 2 we show some typical plots of the intensity Ism(q) for two different
ratios σ = 10/15 and 10/20, two different coupling strengths λ = 0.4 and 0.8 and strictly
linear geometry, d ‖ a (then, only the component of the wavevector in the chain direction
enters). The difference between the zeroth and the first order emerge very clearly. The higher
order terms emphasize the modulation originating from the two length scales ‖a‖ and ‖d‖.

2.2. Sum rule

The total integrated scattering intensity has a well defined magnitude, determined by the local
spin length through the following sum rule:

I =
∑
α

∫
dq

∫
(dω/2π)Sαα(q, ω)∫

dq
= S(S + 1). (11)

For the one-dimensional alternating chain the contribution from the one-magnon part to the
total spectral weight is calculated from equation (7); the integral reduces to the constant part
µ0 of (9), since only non-oscillating terms survive the integration:

Ism = 3
4 (1 − 5

16λ
2 − 3

32λ
3 + 25

1536λ
4 + · · ·) � 3

4 S = 1
2 , λ � 1. (12)

For the non-interacting case (λ = 0) the sum rule is exhausted by the one-triplet excitation
since it is an exact eigenstate: From (3) we see that this excitation gives the only non-vanishing
matrix element. Switching on the coupling between the dimers, more and more intensity goes
in two- or more-magnon scattering processes. A theoretical discussion of the multimagnon
states for the one-dimensional alternating chain is given in [8, 12, 13].
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Figure 2. Structure factor with λ = 0.4, 0.8, a ‖ d and ratio d/a = 10/15.

3. The 3D dimer substances KCuCl3 and TlCuCl3

In this section we extend the calculation of singlet–triplet intensities to three-dimensional
substances such as KCuCl3 and TlCuCl3. These compounds are weakly interacting quantum
spin systems which exhibit an excitation gap. Similar to the alternating chain discussed in the
previous section, this is based on the existence of strongly interacting bonds forming dimers.
In these materials the orientation of the dimers alternates, i.e. each unit cell consists of four
spins with two differently oriented dimers.

The following considerations are valid for dimer systems composed of two dimers per
unit cell. We write for the Fourier transformed spin operators

Sz(q) = 1√
2N

∑
n

2∑
k=1

e−iq(n+Rk )

[
e−i qdk

2 Sz

(
n + Rk +

dk

2

)
+ ei qdk

2 Sz

(
n + Rk − dk

2

)]
, (13)

where n denotes the unit cell, Rk the centre of the dimer and dk the separation of the two spins
forming the dimer. The first sum in (13) is taken over all unit cells. In the case of weakly
interacting dimers the localized triplet states are replaced by Bloch-like triplet modes which
propagate due to the interaction network between the dimer units. The details of the explicit
calculation of the transition matrix elements for a Bravais dimer lattice are illustrated in [8].

In table 1 we describe the interaction network listing the basic lattice vectors associated
with non-zero interdimer interactions for the materials considered. In table 2 we give the
numerical values of the intradimer exchange J (in meV) and of the interdimer exchange
interactions (in relative units) for the compounds KCuCl3 and TlCuCl3. (Slightly improved
values for KCuCl3 have been determined in [17]; the difference, however, is not visible in
figures 3 and 5.)

The different dimer orientations in the unit cell do not affect the dimer lattice directly,
i.e. the lowest excitation does not depend on the dimer orientation. But the full translational
symmetry is obviously reduced if the dimer sites are distinct by their orientation.

In analogy to phonons in a lattice with a basis there will be two excitation modes. Therefore
we use the following zeroth order ansatz for the one-triplet wavefunction, which manifests
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Table 1. Considered interactions in KCuCl3 (and TlCuCl3). Vectors gk denote the distances
between the dimer centres.

Interactions between
Distance gk

between dimers Equivalent spins (i = j) Non-equivalent spins (i �= j)

g1 = a J(100) J ′
(100)

g2 = 2a + c — J ′
(201)

g3 = a + 1
2 (b + c) J

(1 1
2

1
2 )

J ′
(1 1

2
1
2 )

g4 = a − 1
2 (b − c) J

(1 1
2

1
2 )

J ′
(1 1

2
1
2 )

Table 2. Values of exchange interactions in KCuCl3 [5] and TlCuCl3 [3]. The intradimer
interaction J is given in meV; interdimer interactions are given in units of J for the respective
compound.

Exchange constant KCuCl3 TlCuCl3

J (meV) 4.25 5.68
J(100) 0.00 0.06
J ′
(100) 0.10 0.30

J ′
(201) 0.18 0.45

J
(1 1

2
1
2 )

0.20 0.16

J ′
(1 1

2
1
2 )

0.05 −0.10

translational symmetry:

|q〉(0) = 1√
2N

2∑
k=1

∑
n

cke−iq(n+Rk )|n + Rk〉(0). (14)

The states |n + Rk〉(0) denote a triplet at site n + Rk with all the other sites occupied by singlets.
We have introduced the coefficient ck to take into account the different dimer orientations. The
ck are determined requiring that c1|n + R1〉 + c2|n + R2〉 is diagonal in the subspace of the
one-triplet excitations. Two solutions (±) are obtained:

(c+
1 , c+

2 ) = (1, 1) or (c−
1 , c−

2 ) = (1,−1). (15)

The solution c− is connected to umklapp scattering where q → q + u. Umklapp processes
are possible in KCuCl3 and TlCuCl3 with an integer number of the reciprocal lattice vector
u = b∗ or c∗.

The resulting energies are denoted by ω±(q), where we describe both modes in the
first crystallographic Brillouin zone. Up to first order we obtain the well known dispersion
relation [5, 4] in units of J :

ω±(q) = 1 + 2
2∑

i=1

βi cos(gi q)± 2
4∑

i=3

βi cos(gi q) + O(λ2). (16)

Here and in the following we use some shorthand for various combinations of coupling
constants (εi and γ j

i will be needed for the intensity calculation below):

β1 = 1
4 (2J(100) − J ′

(100)), ε1 = 1
4 (2J(100) + J ′

(100)), γ1 = 1
4 J ′

(100),

β2 = − 1
4 J ′

(201), ε2 = 1
4 J ′

(201), γ2 = − 1
4 J ′

(201),

β3 = 1
4 (J(1 1

2
1
2 )

− J ′
(1 1

2
1
2 )
), ε3 = 1

4 (J(1 1
2

1
2 )

+ J ′
(1 1

2
1
2 )
), γ±

3 = 1
4 (±J(1 1

2
1
2 )

+ J ′
(1 1

2
1
2 )
),

β4 = β3, ε4 = ε3, γ±
4 = γ±

3 .

(17)
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Figure 3. Total spectral weight I+ + I− along the (0, x, x) direction in zeroth, first and second
order. Top panel, KCuCl3; bottom panel, TlCuCl3.

To obtain the transition matrix element one has to expand both the ground state and the one-
triplet state perturbatively in the coupling constants. To indicate the order we take all interdimer
couplings proportional to a constant λ.

3.1. The ground state

There are four different directions gi in which we find interdimer interactions (see table 1).
As well as in the one-dimensional case the unperturbed ground state is a product of singlets
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placed on the rungs:

|G〉(0) =
∏

n

|sn+R1〉|sn+R2 〉 = |S〉. (18)

Due to the different orientations we distinguish between singlets at n + R1 and n + R2. Up to
the second order the ground state including all relevant states for the structure factor is

|G〉(2) = α0|S〉 +

√
3

2

4∑
i=1

2∑
k=1

∑
n

βi(1 + εi)|n + Rk,n + Rk + gi〉(0,0) (19)

−
√

3

2

4∑
i, j=1

2∑
k=1

∑
n

βiβ j |n + Rk,n + Rk + gi + g j〉(0,0) (20)

−
√

3

2

4∑
i, j=1
i �= j

2∑
k=1

∑
n

βiβ j |n + Rk,n + Rk + gi − g j〉(0,0) (21)

+ states with three or four triplet excitations. (22)

The indices i, j are linked to the different interaction directions and k counts the two dimer
sites in the elementary cell. We further denote the states having two triplets at sites r and r′
with well defined Stot and Sz

tot by |r, r′〉(Stot,S
z
tot). α0 is a normalization factor which guarantees

that 〈G|G〉(2) = 1 + O(λ3):

α0 = 1 − 3
4 N

4∑
i=1

β2
i . (23)

Note that N labels the number of unit cells, whereas 2N is the number of dimers in the system.

3.2. One-triplet excitation

The expansion of the wavefunction for the one-triplet excitation in the interdimer interactions
is obtained to first order by acting with the Hamiltonian H1 on the state (14) and some
subsequent normalization. In addition to simple propagation of the triplets this leads to the
generation of two-triplet excitations |r, r′〉(1,0) where (Stot, Sz

tot) = (1, 0) is the total spin and
total magnetization and r, r′ label the lattice sites occupied by triplets. There are also three-
triplet excitations with the same spin quantum numbers. Second order terms contribute to the
third order4 of the intensity only and will not be calculated here. However, normalization of
the wavefunction has to be done up to second order terms.

3.3. The dynamical structure factor

To leading order one expects a dimer-like structure factor as in section 2. In fact, there are two
different contributions due to the two dimer structure in the elementary cell:

I±(q) = D2
±(q) + O(λ1) =

[
sin

qd1

2
± sin

qd2

2

]2

+ O(λ1). (24)

The indices ± refer to (16) and correspond to symmetric (respectively antisymmetric) modes
for q in the first Brillouin zone. However, the role of symmetric and antisymmetric modes is
interchanged for q → q + τ where eiτ (R2−R1) = −1. From now on q stays in the first Brillouin
zone.

4 All contributing terms can be obtained on request.
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The representation of (24) is instructive in order to emphasize that in general there are
contributions from two different modes for a wavevector q in the crystallographic Brillouin
zone. The total contribution

I+(q) + I−(q) = 2 sin2 qd1

2
+ 2 sin2 qd2

2
(25)

reproduces correctly the structure factor
∫

dω S(q, ω) as calculated from (1) in lowest order.
A finite contribution for the excitation mode with energy ω−(q) requires qd1 �= qd2.

Taking into account the dimer orientations d1,2 where

d1 = 0.48a + 0.10b + 0.32c,

d2 = 0.48a − 0.10b + 0.32c
(26)

we deduce the condition qb �= 0, in agreement with the experimental observations.
Considering higher order corrections to the ground state and the first excited state as

presented below, we get the following result valid up to second order:

I±(q) = 1
4 D2

±(q)(1 −±(q) +2
±(q)−�±(q)−�1(q))

+
1

2
D±(q)

(
cos

qd1

2
± cos

qd2

2

)
�±(q) (27)

where

±(q) = 2
2∑

i=1

βi cos(qgi)± 2
4∑

i=3

βi cos(qgi), (28)

�±(q) =
4∑

i=1

[3β2
i − β2

i cos(2qgi)] + 2
2∑

i=1

βiεi cos(qgi)± 2
4∑

i=3

βiεi cos(qgi), (29)

�1(q) = 4
2∑

i=1

γ 2
i [1 + cos(qgi )] + 2

4∑
i=3

[γ +
i

2 + γ−
i

2
+ 2γ +

i γ
−
i cos(qgi)], (30)

�±(q) = 2
2∑

i=1

βiγi sin(qgi) + 2
4∑

i=3

βi(γ
−
i ± γ +

i ) sin(qgi). (31)

The dynamical structure factor contains contributions from both excitation modes:

Szz(q, ω) = I+(q)δ(ω − ω+(q)) + I−(q)δ(ω − ω−(q)), (32)

where ω±(q) denotes the one-triplet excitation energy as in (16). We note that (q) is the
energy of the one-triplet excitation ω+(q) up to first order. If we neglect the terms �i (q) and
�±(q) the result reduces to RPA-like calculations [9] where I±(q) ∝ 1/ω±(q).

In order to demonstrate the effect of interdimer interactions on the dynamical structure
factor we show in figure 3 theoretical results for KCuCl3 (top panel) and TlCuCl3 (bottom
panel) in zeroth (non-interacting dimers), first and second order; exchange parameters are
taken from table 2. As in the INS experiments to be discussed in the next section and as in [9],
the variation of the spectral weight of the triplet excitation I+ + I− with wavevector is shown
along the (0, x, x) direction of reciprocal space, such that both modes contribute with finite
weight. Evidently, higher order corrections are more important for TlCuCl3 with its larger
exchange constants, but even for these larger values the comparison of different orders seems
to indicate convergence. Exhaustive experimental results for both I+ and I− are available for
KCuCl3 and will be discussed in the next subsection. Clearly, devoted INS experiments for
TlCuCl3 are of considerable interest (see also [4] and [3]); the ratio of spectral weights at
wavevectors corresponding to maximum and minimum intensity appears to be a reasonable
quantity to test the agreement with our theoretical results. Present results do not indicate that
calculations higher than second order are required.
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Figure 4. Typical fits of the neutron profiles for wavevectors q taken at selected (0, x, x) values in
(rlu).

3.4. Experiment

The INS results on the material KCuCl3 were collected at the IN3 neutron spectrometer, Institut
Laue–Langevin, Grenoble (France). Standard focusing geometry was adopted for all energy
scans performed under constant final energy Ef = 13.7 meV. A pyrolitic graphite (PG) filter
in front of the analyser was further used to suppress higher order contaminations.

The INS profiles were obtained at fixed T = 2 K for the wavevectors along the (0, x, x)
direction of reciprocal space, which is suited to demonstrate the issues introduced above. For
this purpose, a KCuCl3 single crystal was aligned for scattering in the b∗c∗ plane. The spectral
weight of the triplet excitation was determined from global least squares fits to the measured
neutron profiles, assuming Gaussian peaks on top of a common background. The centre of
the peaks was further fixed at the energies ω±(q) resulting from the analysis presented in [5]
(see table 2). Our present results complete the experimental investigation of the b∗c∗ plane
summarized in [4], and references therein.

In figure 4 typical fits of the neutron profiles are shown for wavevectors q at selected
(0, x, x) values, in reciprocal lattice units (rlu) of the unit cell. In accordance with the
theoretical expectations,both excitation modesω±(q) are visible along (0, x, x)but the spectral
weight I±(q) strongly depends on x . Continuous curves denote the global least squares fit
function, symbols the profiles in neutron counts. The statistical tolerance scales according to
the neutron counts. In figure 5, the fitted spectral weight is compared to the model expectations
previously introduced. In the top panel, the total spectral weight F2(I+ + I−) (full curve) is
compared to the experimental observations (symbols). The only free parameter is an overall
scaling factor accounting for the size of the sample; both the plain calculation (dashed dotted
line, second order) and the squared magnetic form factor F2 (dotted curve) [14] are shown
separately for convenience. In the bottom panel, the relative spectral weight I+/(I+ + I−)(q)
is compared to the experimental observations, as indicated. The graphical representation
underlines the redistribution of the spectral weight among I+ and I− which occurs along the
(0, x, x) direction of reciprocal space.

From figure 5, reasonable agreement between predictions from the dimer model and
experimental results is concluded. The spectral weight is dominated by the bipartite dimer
structure, which governs the result in the non-interacting dimer limit,but the existence of higher
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Figure 5. Spectral weight of the triplet excitation for KCuCl3 along the (0, x, x) direction in
reciprocal space. Symbols indicate experimental data from a least squares fit to the profiles. Top
panel: theoretical result for F2(I+ + I−) in second order (full curve) and for non-interacting dimers
(dashed curve), F2 (dotted curve) and (I+ + I−) in second order (dash–dotted curve). Bottom panel,
full curve: theoretical result in second order for the relative spectral weight.

order corrections is clearly seen close to the second maximum (x ≈ 3). Details of higher order
corrections remain almost beyond statistics for KCuCl3 but may become more pronounced in
the sister material TlCuCl3. Our results improve on the previous RPA calculations [9] which
are correct only to first order. Related investigations along different directions of the b∗c∗ plane
were successfully compared to RPA calculations in [15]. The relative spectral weight (bottom
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panel of figure 5) is very well described already in the non-interacting dimer picture (not shown
in figure 5); higher order corrections are below statistical significance for this quantity.

3.5. Sum rule

We calculate the one-magnon contribution to the total integrated scattering intensity in order
to check the sum rule (12). As seen in (32) the dynamical structure factor consists of two parts.
Integrating over q, only non-oscillating terms survive, giving

Ism = 3
4

[
1 −

4∑
i=1

β2
i − 4(γ 2

1 + γ 2
2 )− 2(γ +

3
2 + γ +

4
2 + γ−

3
2

+ γ−
4

2
)

]
+ O(λ3). (33)

Using the coupling constants as calculated in [5] we estimate here the intensity which goes
into higher order scattering processes such as two- or more-magnon scattering. We obtain
Ism = 0.7217 which means that 96.23% of the total scattering intensity is concentrated in the
lowest triplet excitation. Although the interactions in TlCuCl3 are more pronounced most of
the scattering intensity still goes in the one-magnon process which is reflected by inserting
calculated coupling constants [3] in (33): Ism = 0.7021 or 93.62% respectively. The absolute
experimental determination of the spectral weight from dimers is exemplified in [16], but a
devoted investigation of the materials KCuCl3 and TlCuCl3 has not been performed to date.

4. Conclusion

We have presented series expansions for the dynamical structure factor valid generally for
lattices with two dimers per unit cell. Applying our results to the interacting dimer material
KCuCl3, we have shown that results obtained by inelastic neutron scattering are reasonably
well described by the theoretical calculations. Our expressions apply as well to the sister
material TlCuCl3, which shares with KCuCl3 the structure of the exchange couplings, but has
larger exchange strengths. For the specific direction in q-space considered here our results
show that higher order terms are not relevant for relative spectral weights (see figure 5 as
measured in KCuCl3 with present intensity) and we expect that this is generally true. Second
order shifts, however, show up in absolute spectral weights [17], most clearly in TlCuCl3.

The materials KCuCl3 and TlCuCl3 have recently been demonstrated to undergo field-
induced magnetic ordering. The evolution of the excitation modes at finite magnetic field has
been described in a comprehensive theoretical study [18], albeit limited to the energy of the
excitations. Theoretical investigations of the spectral weight in an external magnetic field are
now under preparation.
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Appendix A. Cluster expansion

In this appendix we briefly summarize the method of cluster expansion for the dynamical
structure factor in the case of the alternating chain. Some detailed considerations can be found



Dynamical structure factors for dimerized spin systems 8525

α
2

S (n)
α
2

S (n+1)

α
1

S (n)

S  (n–1)
α

S (n+1)
α
1

2 

S  (n–1)
α
1 

ad

Figure A.1. Linear arrangement of dimers indicating the similarity of alternating chain (interdimer
interactions only between S2(n) and S1(n + 1)) and ladder (general interdimer interactions)
geometries.

elsewhere [19]. As shown in figure A.1, the crystallographic unit cell contains two spins. Thus
the Fourier transform of the spin operator splits into two parts and reads as

Sα(q) =
∑

n

e−iqna(e−i qd
2 Sα1 (n) + ei qd

2 Sα2 (n)). (A.1)

As before ‖a‖ = a is the distance between neighbouring spins and d denotes the spacing
between the two spins on a dimer. In our notation q is the projection of the wavevector q on
the chain direction.

Using translational invariance with respect to the centre of the dimer we obtain for the
singlet–triplet transition amplitude

Ism(q) =
∑

n

e−iqan[Azz
11(n) + Azz

22(n) + eiqd Azz
12(n) + e−iqd Azz

21(n)] (A.2)

where

Azz
i j (n) = 〈0|Sz

i (0)|t〉〈t|Sz
j
†
(n)|0〉, i, j = 1, 2. (A.3)

Here, the sum is taken over all integer numbers n. However, it is more convenient to calculate
the functions Azz

i j (n) for positive numbers n. This is feasible making use of inversion symmetry
wrt the dimer centre, implying

Azz
11(−n) = Azz

22(n) and Azz
12(−n) = Azz

21(n). (A.4)

Inserting (A.4) into (A.2) one arrives at the following result:

Ism(q) = 2
∑
n>0

(Azz
11(n) + Azz

22(n)) cos(qna) (A.5)

+ 2
∑
n>0

(Azz
12(n) cos(qna − qd) + Azz

21(n) cos(qna + qd)) (A.6)

+ Azz
11(0) + Azz

22(0) + eiqd Azz
12(0) + e−iqd Azz

21(0). (A.7)

Now, functions Azz
i j (n) enter for positive n only. In the limit of non-interacting dimers only

the terms with n = 0 (last line) survive.
At first glance the functions Azz

i j (n) are ground-state expectation values which can be
computed by the well established cluster expansion method [20]. The projection operator
P = |t〉〈t| has to be evaluated from the one-magnon states |ψ(i)〉, where i labels the lattice
site. By means of degenerate cluster expansion these states are generated order by order [21].
Then we find for the projection operator

P = |1〉〈1| =
∑

i j

(g−1)i j |ψ(i)〉〈ψ( j)|. (A.8)



8526 M Müller et al

g is the overlapping matrix of the |ψ(i)〉:
gi j = 〈ψ(i)|ψ( j)〉. (A.9)

To invert g we use the fact that g is the unit matrix for λ → 0:

g = I + g̃. (A.10)

Owing to the matrix norm ‖g̃‖ < 1 we apply a geometric series to invert g:

(I + g̃)−1 =
∞∑

i=0

g̃i . (A.11)

Now we have everything at hand to calculate the singlet–triplet intensity of the dynamical
structure factor: apply degenerate perturbation theory to obtain the states |ψ( j)〉 and P . Then
calculate g and invert this matrix by using (A.11). Finally, apply non-degenerate perturbation
theory to compute the functions Azz

i j (n).

References

[1] Rice T 2002 Science 298 760
[2] Cavadini N, Heigold G, Henggeler W, Furrer A, Güdel H-U, Krämer K and Mutka H 2001 Phys. Rev. B 63
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[16] Zheludev A, Shirane G, Sasago Y, Hase M and Uchinokura K 1996 Phys. Rev. B 53 11642
[17] Müller M 2002 Clusterentwicklungen für dimerisierte spinsysteme Dissertation Hannover
[18] Matsumoto M, Normand B, Rice T and Sigrist M 2002 Phys. Rev. Lett. 89 77203
[19] Gelfand M P and Singh R R P 2000 Adv. Phys 49 93
[20] Gelfand M P, Singh R R P and Huse D A 1990 J. Stat. Phys. 59 1093
[21] Gelfand M P 1990 Solid State Commun. 96 11


